

#### NEK ELSIKKERHETSKONFERANSE, 22. NOV 2017 Cyber Security – med vekt på industrielle løsninger

### Managing Cyber Security in Power and Automation

Judith Rossebø, Cyber Security Specialist, Member of NK65

### Focus of presentation

#### **Topics covered**

- Cyber Security in Power and Automation
  - Why is Cyber Security an Issue?
  - Cyber Security Trends
- What are the Challenges?
- How Should the Challenges be Addressed?
- Industry Approach ISA/IEC 62443 Standards

### Cyber security in power and automation

Why is cyber security an issue?

#### Power and Automation Today

Modern automation, protection, and control systems are highly specialized IT systems

- Leverage commercial off the shelf IT components
- Use standardized, Ethernet-based communication protocols
- Are distributed and highly interconnected
- Use mobile devices and storage media
- Based on software (> 50% of manufacturers offerings are softwarerelated)
- IT/OT Convergence

#### **Cyber Security Issues**

- Increased attack surface as compared to legacy, isolated systems
- Communication with external (non-OT) systems
- Attacks from/over the IT world

Attacks are real and have an actual safety, health, environmental, and financial impact



### Cyber security in power and automation





### Cyber Attack on the Ukrainian Electricity Grid

#### Example in 2015

CNET > Security > Ukraine blackout is a cyberattack milestone

# Ukraine blackout is a cyberattack milestone

Hundreds of thousands of homes were left in the dark in what security experts say was a first for hackers with ill intent.



Manage security cameras, footage with your own private cloud

#### Spansored by Synology

Security



by Katie Collins January 5, 2016 1:55 PM PST @katiecollins y

Some cyberattacks are about stealing data, some about monkeying with someone else's machines. This one left innocent bystanders in the dark.

A massive power outage in Ukraine last month has been attributed to hackers targeting the electricity grid with malware. Security researchers say it is the first known instance of a blackout being credibly linked to the actions of malicious hackers.





### Attack on the Ukrainian Electricity Grid

Technical components involved in the attack:



BlackEnergy 3 VPN & Credential Theft Network & Host Discovery

**Phishing E-mails** 

Malicious Firmware Development

SCADA Hijack (HMI/Client)

Breaker Open Commands

UPS Modification Firmware Upload KillDisk Overwrites

Power Outage(s)



### What are the Main Cyber Security Challenges?

### Challenges

#### Organizational

#### **Risk Management**



#### **Competence Management**



#### Awareness



#### **Disruptive Changes**



#### ©ABB November 29, 2017 | Slide 8

Images: www.guardianconsultants.co.uk, wegilant.com, www.floris-cm.nl, blogpool4tool.com



### Challenges

Technical

#### **Installed Base**



#### Heterogeneity



#### Sustaining Security



#### Compliance



#### Situational Awareness



#### **Vulnerabilities**



©ABB November 29, 2017 | Slide 9

Images: www.zazzle.co.nz, www.zoho.com, blog.monitorscout.com, www.leadthefish.com, nl.123rf.com, www.ccure.it



### How Should the Challenges be Addressed?

### How should the challenges be addressed?

4 key questions should be addressed:

## Can we really defend ourselves?



Can we identify potentially malicious activities?



Do we know our infrastructure and systems?



Can we recover from any incident?





### How should the challenges be addressed?

Proper preparation:

# Requires a change from all of us!



Make an inventory of what you have



# Know the behavior of your infrastructure and systems



Compare your actual with your baseline



# Monitor vulnerability disclosures



# Patch your systems and stay up to date



©ABB November 29, 2017

Slide 12 Images: howstuffworks.com blog.optimizely.com lisagroup.com.au dhs.org cve.mitre.org securityfocus.com www.marketingzen.com



### Industial Approach – IEC 62443 Standardization

### **Cyber Security Standards**

ISA/IEC 62443 : Industrial Automation and Control System Security

| ISA IEC | General                  | IEC 62443-1-1 (Ed. 2)<br>Concepts and models                                       | IEC/TR 62443-1-2<br>Master glossary of<br>terms and abbreviations                        | IEC/TS 62443-1-3<br>System security<br>conformance metrics              | IEC/TR 62443-1-4<br>IACS security life-cycle<br>and use-cases                   |
|---------|--------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|         | Policies &<br>Procedures | IEC 62443-2-1 (Ed. 2)<br>Requirements for an<br>IACS security<br>management system | IEC/TR 62443-2-2<br>Implementation guidance<br>for an IACS security<br>management system | IEC/TR 62443-2-3<br>Patch management in<br>the IACS environment         | IEC 62443-2-4<br>Security program<br>requirements for IACS<br>service providers |
|         | System                   | IEC/TR 62443-3-1<br>Security technologies<br>for IACS                              | IEC 62443-3-2<br>Security risk assessment<br>and system design                           | IEC 62443-3-3<br>System security<br>requirements and<br>security levels |                                                                                 |
|         | Component                | IEC 62443-4-1<br>Product development<br>requirements                               | IEC 62443-4-2<br>Technical security<br>requirements for IACS<br>components               |                                                                         |                                                                                 |



### **Zones and Conduits**

A network & system segmentation technique:

- Prevents the spread of an incident
- Provides a front-line set of defenses
- The basis for risk assessment in system design



### **Foundational Requirements**

System and component capability requirements

- FR 1 Identification & authentication control
- FR 2 Use control
- FR 3 System integrity
- FR 4 Data confidentiality
- FR 5 Restricted data flow
- FR 6 Timely response to events
- FR 7 Resource availability



### **Security Levels**

For component and system capabilities

**Protection against attacks:** 





### **Product supplier use of IEC 62443**

Part 4-1 Product security development life-cycle requirements

- Secure development processess integrated with formal development process (e.g. ISO 9001 process)
- Security requirements for processes used during product development and support by a product supplier. One of the required development processes is to define security requirements for the product.

Supporting standards for the definition of product security requirements

- Part 3-3 System security requirements and security levels
  - Requirements for security capabilities of control systems taken as a whole
- Part 4-2 Technical security requirements for IACS components
  - Requirements for security capabilities of components used in control systems

### Service providers use of IEC 62443

Part 2-4 Requirements for control system solution providers

• Requirements for integrating, installing, configuring and maintaining the security of the industrial control system

Areas covered:

- Staffing, network security, solution hardening, data protection, configuration management, event management, account management, patch management backup/restore, wireless, SIS integration with BPCS, malware protection, remote access
- Process inputs:
  - Product manuals required by Part 4-1
  - Product capabilites required by Parts 3-3 and 4-2
  - Security policies

### Asset owners use of IEC 62443

- Part 2-1 Security program requirements for asset owners
  - Security requirements for control system installations
  - Integrates with Parts 3-3, 2-4 and 4-2
  - Places requirements on control systems that can support supply chain/procurement of devices/components, control systems and services
- Part 3-2 Security risk assessment, system partitioning and security levels
  - Process for cyber security risk assessment for defining a secure control system architecture
  - Partitioning into Zones and Conduits
- Part 1-5 Protection Levels (under development)
  - Addresses evaluation of a control system security program
  - Protection Levels as combination of Security Levels and Maturity Levels

### **Real Life Example**

#### Application of 62443-3-3 to the Ukrainian Case

Which Security Level would have been required to prevent the attack? (Based on an analysis of which security controls were missing)



References: SANS ICS, E-ISAC, March, 2016, and

Slide 21 «A forensic analysis based on ISA/IEC 62443 of the cyber attacks on the Ukrainian power grids», by Patrice Bock, Jean-Pierre Hauet, Romain Francoise, and Robert Foley, November, 2016



### Cyber Attack on the Ukrainian Electricity Grid

#### Which 62443 security controls were missing?



### Cyber Attack on the Ukrainian Power Grid

#### Which 62443 security controls were missing?

- FR 1 Identification & authentication control
  - SR 1.13 Lack of restrictions on access from untrusted networks, no explicit access aproval required
- FR 2 Use control
  - SR 2.4 Lack of protection made it possible to transfer malware to several systems on the OT network
  - SR2.6 It was not possible for the Operator to terminate the attackers remote connection
- FR 3 System integrity
  - SR3.3 No malicious code protection (no anti-virus software on the systems)
- FR 4 Data confidentiality Ok
- FR 5 Restricted data flow OK, FWs restricted data flow
- FR 6 Timely response to events
  - SR 6.2 Lack of Network monitoring allowed the attackers to scan the networks for weeks...
- FR 7 Resource availability
  - SR 7.4 Disks were erased (Kill-disk), lack of adequate backup policy



### **Any Questions?**





